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Energy flux fluctuations in a finite volume of turbulent flow
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The flux of turbulent kinetic energy from large to small spatial scales is measured in a small domain B of
varying size R. The probability distribution function of the flux is obtained using a time-local version of
Kolmogorov four-fifths law. The measurements, made at a moderate Reynolds number, show frequent events
where the flux is backscattered from small to large scales, their frequency increasing as R is decreased. The
observations are corroborated by a numerical simulation based on the motion of many particles and on an

explicit form of the eddy damping.
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I. INTRODUCTION

There is considerable interest in the global (spatially av-
eraged) fluctuations in systems driven far from equilibrium
[1-4], of which fluid turbulence provides a striking example
[5,6]. An essential aspect of three-dimensional (3D) turbu-
lence is the cascade of energy from large to small scales,
followed by dissipation at the smallest scales. Characterizing
the energy flux is particularly important for turbulence mod-
eling. The local rate of energy dissipation is known to fluc-
tuate wildly [6]. This work investigates a flux of energy from
large to small scales, averaged over a local region of finite
extent.

The spatially averaged value of the energy flux & over a
subvolume of the fluid B of typical size R is simply given by
the rate of dissipated kinetic energy if the system is in a
steady state. In that case the flux is necessarily positive and is
directed from large to small scales. However, temporal fluc-
tuations in this flux can be very substantial. In fact, it has
been demonstrated several times that energy may backscatter
from small to large scales, leading to a negative value of the
energy flux [7,8]. It is natural to expect that this effect should
depend on the scale of the subsystem investigated. One of
the aims of this work is to quantify the fluctuations of the
energy flux measured over a subdomain of the flow, and in
particular, its dependence on the subdomain’s size.

Under conditions of local isotropy, the ensemble-averaged
energy dissipation rate, g, is related to the third moment of
the longitudinal velocity differences at a given scale, r,

([ ()= Sr. m

The recent theoretical [9-11] and numerical work [12]
leads to a generalization of Eq. (1), which is local in space
and time. More precisely, if one considers any finite subdo-
main of the flow, B, the average of [Au;(r)]® over all direc-
tions of the vector r, and over all points in B, is equal to
(—=4/5)eg(t)r, where ep is the energy flux towards small
scales in the subdomain B,
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Here (- --)p o denotes the average over the subvolume B,
and over all possible directions (£)). The derivation of Eq.
(2) is based on a rigorous energy balance for weak solutions
of the Navier-Stokes equations, in the Re — oo limit [10]. In
this sense the quantity e(f) is really the instantaneous, iner-
tial range dissipation rate, interpreted here as an energy flux
(defined as positive towards small scales). Equation. (2) jus-
tifies the intuitive estimates of the rate of change of energy in
a volume, by a straightforward averaging with the help of
Eq. (1), even when the key assumption of local isotropy is
not satisfied. The spherical average in Eq. (2) permits the
recovery of the isotropic sector from an arbitrary (aniso-
tropic) flow [12].

In practice, the average over all directions is replaced here
by an average over particle pairs along all azimuthal direc-
tions in an instantaneous snapshot within the subdomain B of
interest. The magnitude and sign of the numerator on the
right-hand side (RHS) fluctuates in time, though it must be
negative on the average if the system is in the steady state.
This assures that the time average of the flux eg(7) is posi-
tive.

Averaging over all pairs of particles in a subdomain of the
fluid, as done here experimentally, has also been proposed as
a way of estimating the energy dissipation in a numerical
scheme, based on the ‘“smooth particle hydrodynamics”
(SPH) method [13]. In such an approach the values of vari-
ous hydrodynamic fields at a point x are obtained by inter-
polating, with the help of all the neighboring particles, within
a smoothing distance % from the point x. An expression for
the eddy damping, very similar to Eq. (2) has been postu-
lated in [14] (see also discussion below). Implementing nu-
merically this eddy damping in a SPH code, as done in [14]
leads to a large eddy simulation scheme, based on particles
moving with the flow (Lagrangian particles), where the
smoothing length % is the smallest scale resolved numeri-
cally. The present experimental setup allows an explicit mea-
surement of the energy flux from Eq. (2) and a comparison
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a) Top view

FIG. 1. (a) Top view and (b) side view of the
experimental setup. A tank of lateral dimensions
1 mX1 m is filled with water to a depth of 30
cm. A laser beam passing through a cylindrical
lens generates a sheet of laser that illuminates a
horizontal plane of the turbulent fluid 4 cm below
the surface. Turbulence is generated by a system
of 36 capped rotating jets situated at the tank
floor. Neutrally buoyant tracer particles are sus-
pended in the turbulent fluid. A high speed cam-
era suspended above the tank records the motion
of tracers as they scatter light upon entering the
sheet of illumination.
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with the postulated form of the eddy damping [14]. The ex-
perimental results demonstrate that the postulated form of
the energy-dissipation term is very strongly correlated with
the energy flux obtained from Eq. (2). Furthermore, the nu-
merical scheme based on SPH allows one to study the energy
flux in a subdomain of the system as a function of size. The
qualitative agreement between the experimental and the nu-
merical studies is excellent.

II. EXPERIMENTAL METHOD

The experimental arrangement is identical to the one used
previously for studying surface turbulence [15,16] and is
shown in Fig. 1. Measurements are made 4 cm below the
surface in a square tank of side length 1 m, filled with water
to a height of 30 cm. The fluid is seeded with neutrally
buoyant glass beads of 10 um mean diameter. The local ve-
locity of the fluid is captured by a high speed camera that
records the movement of particles over a square area of side
length L=7.7 cm. The laser sheet illuminating the particles is
roughly 1 mm thick, but the camera’s depth of field is a tenth
of this. Thus only the horizontal components of velocity are
captured. The buffer size of the camera limits the duration of
data collection to 5 s at a frame rate of 400 frames per sec-
ond. The velocity field is constructed by correlating pairs of
images with a particle tracking program. The spatial resolu-
tion of the measurements depends upon the length of a pixel
in the camera’s sensor. Hence the spatial resolution in this
experiment is 7.7 cm/1024 pixels=75 um. The temporal

resolution is the sampling rate which is 7.5 ms for this ex-
periment. Hence the velocity resolution obtained in this ex-
periment is 1 cm/s. To ensure reliability of the measured
velocities, every nth and (n+3)rd image is employed in ve-
locity field construction. The weak nonzero mean velocity
observed in the flow is systematically subtracted out. Physi-
cal parameters that characterize the turbulence are given in
Table I.

III. RESULTS AND DISCUSSION

Though the Reynolds number in the experiment is low,
the flow exhibits a well-defined inertial range. Figure 2
shows the space and time-averaged S;(r)=(A[u,(r)]*) vs r in
the range 0.07 cm<r=<3.5 cm. Each instantaneous third
moment is constructed from an average over all particle pairs
in the field of view. There are roughly 103 particle pairs at
each r value contributing to the spatial average at each in-
stant. Twelve time-uncorrelated measurements of the third
moment are averaged to obtain the plot in Fig. 2. The inter-
val between these measurements is 1.4 s, which is the life-
time of the largest eddies, as determined from the velocity
autocorrelation function. Therefore each data set provides
four measurements uncorrelated in time. Three such data sets
are taken in quick succession to obtain the average. In form-
ing this spatial average of S;(r), data for r<<0.07 cm are
excluded, since velocity differences cannot be reliably mea-
sured below this value. The statistical error in the time aver-
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TABLE 1. Turbulent quantities of interest measured in the experiment.

Parameter Expression Measured value
uz}n&'
Taylor microscale \(cm) ((Iudx)?) 0.32
Taylor microscale Reynolds number Rey Uppsh 79
14
Integral scale /,(cm) (Lug(e+r)ug (x)]) 3.5
dx|——————
(u (%)%
Large eddy turnover time 7; (s) Ay 1.4
urm.r
Dissipation rate & ,,(cm?/s3) 15 %)2 8.3
ox
Kolmogorov scale 7(cm) ( v )”4 0.02
Ediss
RMS velocity u,,,,(cm/s) V@@ —(u)? 2.4

aged S5(r) is less than 5% as observed from the error bars in
Fig. 2.

Shown in Fig. 3 is x*P(x) where x=Au,(r,?) at the three
indicated » values 0.3, 0.5 cm, and 0.7 cm. The measure-
ments were made at one instant of time. The integral of this
function over x is the the instantaneous third moment of
interest. Each P(Au,(r,t)) is constructed from 10° particle
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FIG. 2. (Color online) The time-averaged third-moment of lon-
gitudinal velocity differences ([S3(r)]) as a function of particle
separation r(cm). The plot is constructed by averaging over 12
time-uncorrelated velocity snapshots.

pairs. The statistical fluctuations in each of the curves is
adequately small to yield a statistically significant value of
the (fluctuating) third moment and hence the probability dis-
tribution function (pdf) of this moment P(S5(r)), at least for
the values of r listed above. According to Eq. (2), the pdf of
the energy flux is then given by P(g)=P(S5(r))/ (—;ir).

The inset to Fig. 4 shows a 5 s time record of &(r,¢) for
r=1.925 cm. One sees that the energy flux is positive most
of the time, but does show intervals of reversed energy flow.
The figure itself shows the pdf of energy flux at the same
three inertial range r values of Fig. 3. One expects that in the
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-0.02
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FIG. 3. (Color online) The integrand of the third moment of
longitudinal velocity differences can be constructed reliably for an
instantaneous snapshot for different spatial separations r (here taken
for r=0.3, 0.5, and 0.7 cm).
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FIG. 4. (Color online) The inset shows the time trace of energy
flux obtained from Eq. (2). The main figure shows the pdf of energy
flux obtained for three different spatial separations r=0.3, 0.5, and
0.7 cm.

inertial range all three curves should coincide, and they ap-
proximately do so. This r independence in the inertial range
is expected for the third moment. The energy flux here is
experimentally obtained from Eq. (2) for a subdomain B of
size R=1.925 cm. As required by Eq. (2) the pdfs are posi-
tively skewed.

The energy flux is also experimentally obtained for sub-
domains B of size R (R=7.7 cm, 3.85 c¢m, and 1.925 c¢m)
keeping the particle separation r=0.7 cm constant. The
“width” of their pdfs decreases with increasing R, as one
would expect. In general agreement with previous observa-
tions, it is found that the probability of backscattering is
significant, but it is measured to be a monotonically decreas-
ing function of R when R increases beyond /.

IV. NUMERICAL SIMULATIONS

The experimental results have been supplemented by a
numerical simulation, using the SPH algorithm to simulate
flows with particles [13]. In this approach, the fluid is repre-
sented by particles, whose positions, r; and velocities, v;
evolve according to the equation of motion

dr; dv;
—=v,, —=-Vp;+f;+D,, 3
PR p (3)

where Vp, is the pressure gradient, f; the forcing term, and D;
the dissipation term. The pressure is obtained from the local
density p; from the equation of state p=p?(y=9), which cor-
responds to a very weakly compressible gas provided |v,| that
is small compared to the velocity of sound. The density p as
well as the gradients are computed at a point X by interpo-
lating the properties of the particles with a kernel function
characterized by a size h. In this approach, scales smaller
than 4 are unresolved. The SPH method allows one to simu-
late flows with a resolution no better than #.
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FIG. 5. (Color online) (a) shows the time-trace (inset) and the
pdf of energy flux for a simulation box of side length L/2. The
fluctuations are always positive and never change sign. (b) shows
the time trace (inset) and the pdf of energy flux for a simulation box
of side length L/8. The fluctuations switch signs frequently when
the box size has diminished.

The issue is thus to adequately parametrize the subgrid
energy dissipation &, occurring below the scale 4. The pre-
cise form for g, is inspired by the Kolmogorov equation
[14,17]; it corresponds to an energy dissipation of

vV
Ep== h_é«vij . rij)vizj . (4)

Here the angular brackets denote an average over all par-
ticles and this term is negative on the average, and v;;= (v,
—v,) is the velocity difference between the particles i and j
separated by the distance r;;. The parameter v, is a dimen-
sionless constant deduced to be of the order of unity [14],
and should not be confused with kinematic viscosity. The
experimental apparatus permits measurement of the postu-
lated eddy-damping term, and a comparison with the form of
Eq. (2). Agreement between the flux in Eq. (2) and the dis-
sipation in Eq. (4) is extremely good. With a properly ad-
justed value of w, the correlation between &(r) and g, is
~0.98 at the three values of R=7.7, 3.85, and 1.925 cm. All

026308-4



ENERGY FLUX FLUCTUATIONS IN A FINITE VOLUME ...

the properties of the energy flux computed with Eq. (4) are
essentially identical to the properties computed with Eq. (2),
as shown in Fig. 5 . The precise value of v, is ~4.8. The
value of v, depends on the precise geometry of the subdo-
main B. This experimental finding is a striking confirmation
of the validity of the eddy-damping postulated in Ref. [14].
The implementation of SPH algorithm is described in Ref.
[14]. In the calculation, the forcing term is chosen as a ran-
dom superposition of three low wave-number Fourier modes.
The velocity of each particle was no larger than 1/10 the
velocity of sound, so the flow is effectively incompressible.
The energy flux over a subvolume of the system is computed
numerically, as effectively done in the experiment. The total
energy flux averaged over a system volume of side length
L/2 (for a simulation box of side length L) has large fluctua-
tions. The inset to Fig. 5(a) shows that the fluctuations re-
main negative for as long as the simulations have been car-
ried out. When averaged over a smaller fraction of the
volume of side-length L/8, one finds that positive fluctua-
tions of the averaged energy flux become possible. This is
evident from the inset to Fig. 5(b) and the corresponding pdf.
The smaller the box size, the larger are the fluctuations. This
finding is fully consistent with the experimental observa-
tions. As in the experiment, it was found that the probability
of energy flux backscattering is a monotonically decreasing
function of the scale R over which the flux is defined.

V. SUMMARY

Fluid turbulence research has focused either on small-
scale properties, with the objective of understanding “inter-
mittency,” or on averages of global properties of interest for
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most applications. Recently, a more systematic investigation
of global fluctuations has been undertaken [3,18,19]. The
focus here is on the energy transfer to smaller scales, a hall-
mark of hydrodynamic turbulence. Whereas on average, the
fluid transfers energy to smaller scales via the cascade pro-
cess, the observed fluctuations are so large as to actually
reverse the energy flux from small to large scales [7]. This
experimental study of the fluctuations of the energy flux is
based on an experiment carried out at a moderate Reynolds
number. The results are based on Eq. (2). It has been shown
that the probability of energy backscattering decreases when
the size of the system increases. Also, the form of the eddy-
damping term as proposed in [14] has been justified. The
experimental results are corroborated by the results of the
calculation based on the particle method.

The systematic study of scale dependence of the fluid
properties is an aspect of this work. It would be interesting to
understand these results in the light of recent fluctuation
theory derived in the context of nonlinear, out-of-equilibrium
systems [2,20].
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